Extreme Learning Machine Under Minimum Information Divergence Criterion
نویسندگان
چکیده
منابع مشابه
Adaptive FIR Filtering under Minimum Error/Input Information Criterion
Abstract: In this paper, we use the mutual information between error/input as the cost function for adaptive filtering. For the finite-impulse response (FIR) filter, the connections between the minimum error/input information (MEII) criterion and traditional mean-square error (MSE) criterion are investigated. We show that, for Gaussian case, the MEII criterion is equivalent to the well-known or...
متن کاملExtreme Learning Machine
Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...
متن کاملExploiting Local Class Information in Extreme Learning Machine
In this paper we propose an algorithm for Single-hidden Layer Feedforward Neural networks training. Based on the observation that the learning process of such networks can be considered to be a non-linear mapping of the training data to a high-dimensional feature space, followed by a data projection process to a lowdimensional space where classification is performed by a linear classifier, we e...
متن کاملExtreme Learning Machine: A Review
Feedforward neural networks (FFNN) have been utilised for various research in machine learning and they have gained a significantly wide acceptance. However, it was recently noted that the feedforward neural network has been functioning slower than needed. As a result, it has created critical bottlenecks among its applications. Extreme Learning Machines (ELM) were suggested as alternative learn...
متن کاملMultiple kernel extreme learning machine
Extreme learning machine (ELM) has been an important research topic over the last decade due to its high efficiency, easy-implementation, unification of classification and regression, and unification of binary and multi-class learning tasks. Though integrating these advantages, existing ELM algorithms pay little attention to optimizing the choice of kernels, which is indeed crucial to the perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3007522